Massively Parallel Particle-in-Cell modeling with WarpX

Andrew Myers

Lawrence Berkeley National Laboratory

On behalf of the WarpX team (lead: Jean-Luc Vay @ LBNL) LBNL, LLNL, SLAC, CEA, DESY, Modern Electron, CERN

2022 NERSC GPUs for Science Day

virtual October 25th, 2022

Note: this presentation includes <u>pre-acceptance</u> benchmarks of NERSC Perlmutter & OLCF Frontier.

WarpX: a growing Multidisciplinary, Multi-Institutional Team from research labs, academia and industry

Ann Almgren

Jean-Luc Vay

(ECP PI)

Bell

Marco Garten

Axel

Rémi

Chad

Ryan

Sandberg/

Olga

Shapoval

Edoardo

Zoni

David Grote (ECP coPI)

Gott

Antonin

Neïl

Yinjian

Zhao

Henri

Luca

Fedeli

Maxence

Thévenet

Severin

Diederichs

Alexander

Sinn

(ECP coPI)

Cho

CEA Saclay (France)

DESY (Germany)

Peter Scherpelz. Michael Kieburtz. Kevin Zhu. Roelof E. Groenewald

Phil Miller

Particle Accelerators are Essential Tools in Modern Life

Medicine

- ~9,000 medical accelerators in operation worldy
- 10's of millions o patients treated.
- 50 medical isotdpes, routinely produced with accelerators

Industry

~20,000 industrial

National Security

Cargo scanning

Discovery Science

• ~30% of Nobel Prizes in

nce 1939

v accelerators

y for research ccelerator

4 Nobel Prizes in

Next generation of accelerators needs next generation of HPC modeling tools!

IITaulatioi

- Welding/cutting
- Annual value of all products that use accel. Tech.: \$500B

proliferation

Opportunity for much bigger impact by reducing size and cost.

Modeling: Exploration \rightarrow **Understanding** \rightarrow **Design**

Demonstrated 10 stages of LWFA modeling

WarpX demo is first 3D simulation of chain of 10 plasma accelerator stages

Convergence study scanned from low to high resolution on 3 to 768 GPUs/run.

In Situ Rendering:

- GPU-accelerated
- zero-copy

Libraries:

Ascent + VTK-m

Schematic of a pot. laser-plasma 1 TeV collider

2019 – acceleration to 8 GeV in 20 cm.

Plasma accelerator can be driven by laser or particle beam

- A multi-TeV plasma-based particle accelerator would be based on multiple plasma stages.
- Each stage is computationally-intensive.
- Need for ×100 stages ×100 ensemble.

Require most advanced algorithms + Exascale

J.-L. Vay, A. Huebl, "Uses of In Situ/In Transit Methods in Large-Scale Modeling of Plasma-Based Particle Accelerators," ISAV'20 Workshop Keynote (2020); M. Larsen et al., "The ALPINE In Situ Infrastructure: Ascending from the Ashes of Strawman," ISAV'17 Conference Paper (2017)

WarpX supports a growing number of applications

Plasma accelerators (LBNL, DESY, SLAC)

Plasma mirrors and high-field physics + QED (CEA Saclay/LBNL)

acceleration shaping (LLNL)

Thermionic converter

Pulsars, magnetic reconnection (LBNL)

Magnetic fusion sheaths (LLNL)

Microelectronics (LBNL) - ARTEMIS

WarpX: Advanced Multi-Physics Particle-in-Cell Code for Exascale

Particle-in-Cell

Advanced Algorithms Pioneered by our Team

boosted frame, spectral solvers, Galilean frame, embedded boundaries + CAD, MR, ...

Multi-Physics Modules (PICSAR)

field ionization of atomic levels, Coulomb collisions, QED processes (e.g. pair creation), macroscopic materials

Geometries

 1D3V, 2D3V, 3D3V and RZ (quasicylindrical)

Multi-Node Parallelization

- MPI: 3D domain decomposition
- dynamic load balancing

On-Node Parallelization

- GPU: CUDA, HIP and SYCL
- CPU: OpenMP

Scalable, Parallel I/O

- AMReX plotfile and openPMD (HDF5 or ADIOS)
- in situ diagnostics

6

Portable Performance through Exascale Programming Model

AMReX library

 Domain decomposition & MPI communications: MR & load balance

Summit: using GPUs
Summit: using CPUs
Summit: using CPUs

100
101
100
101
102
103
Number of Summit nodes

Write the code once, specialize at compile-time

ParallelFor(/Scan/Reduce)

 Performance-Portability Layer: GPU/CPU/KNL

Data Structur

with tiling

A100 gives additional ~< 2x

 Runtime parser for user-provided math expressions (incl. GPU)

Porting to GPUs: Fortran -> C++

Yee FDTD update for Ey, Fortran 90:

```
subroutine push electric field y(ylo, yhi, &
    ey, eylo, eyhi, bx, bxlo, bxhi, bz, bzlo, bzhi, &
    jy, jylo, jyhi, mudt, dtsdx, dtsdz) &
    bind(c,name='push_electric_field_y')
 use amrex fort module, only : amrex real
 implicit none
                   intent(in)
                                  :: ylo(3), yhi(3)
 integer.
 integer.
                   intent(in)
                                  :: eylo(3),eyhi(3)
 integer,
                   intent(in)
                                  :: bxlo(3),bxhi(3), bzlo(3),bzhi(3)
                   intent(in)
 integer.
                                  :: jylo(3), jyhi(3)
 real(amrex_real), intent(inout) :: ey(eylo(1):eyhi(1),eylo(2):eyhi(2),eylo(3):eyhi(3))
 real(amrex_real), intent(in)
                                  :: bx(bxlo(1):bxhi(1),bxlo(2):bxhi(2),bxlo(3):bxhi(3))
 real(amrex real), intent(in)
                                  :: bz(bzlo(1):bzhi(1),bzlo(2):bzhi(2),bzlo(3):bzhi(3))
 real(amrex real), intent(in)
                                  :: jy(jylo(1):jyhi(1),jylo(2):jyhi(2),jylo(3):jyhi(3))
 real(amrex real), value
                                  :: mudt.dtsdx.dtsdz
 integer :: j,k,l
             = ylo(3), yhi(3)
            = ylo(2), yhi(2)
       do j = ylo(1), yhi(1)
          Ey(j,k,l) = Ey(j,k,l) - dtsdx * (Bz(j,k,l) - Bz(j-1,k,l)) &
                + dtsdz * (Bx(j,k,l) - Bx(j,k,l-1)) &

    mudt * jy(j,k,l)

       end do
    end do
 end do
end subroutine push electric field y
```

C++ version:

Array4 multidimensional array object facilitates scientific programming

Upfront cost in development time, but:

- Single codebase for NVIDIA, AMD, Intel
- C++ tends to get first priority in terms of compiler support
- Once made, porting to A100 + MI250X (relatively) easy

KPP on Frontier: x500 over Baseline on Cori

Note: Perlmutter & Frontier are pre-acceptance!

Demonstrated scaling **4-5 orders** of magnitude

Figure-of-Merit over time

Dete	G 1	3.61.1	NT /NT - 1 -	NT. I	FOM	_	
Date	Code	Machine	$N_c/Node$	Nodes	100	_	
3/19	Warp	Cori	0.4e7	6625	2.2e10		
3/19	WarpX	Cori	0.4e7	6625	1.0e11		
6/19	WarpX	Summit	2.8e7	1000	7.8e11)
9/19	WarpX	Summit	2.3e7	2560	6.8e11		
1/20	WarpX	Summit	2.3e7	2560	1.0e12		
2/20	WarpX	Summit	2.5e7	4263	1.2e12		
6/20	WarpX	Summit	2.0e7	4263	1.4e12		
7/20	WarpX	Summit	2.0e8	4263	2.5e12	×	×
3/21	WarpX	Summit	2.0e8	4263	2.9e12	\mathcal{C}	6
6/21	WarpX	Summit	2.0e8	4263	2.7e12	-	
7/21	WarpX	Perlmutter	2.7e8	960	1.1e12	$\overline{}$	
12/21	WarpX	Summit	2.0e8	4263	3.3e12	$\overline{}$	S
4/22	WarpX	Perlmutter	4.0e8	928	1.0e12		
4/22	WarpX	Perlmutter [†]	4.0e8	928	1.4e12		
4/22	WarpX	Summit	2.0e8	4263	3.4e12		
4/22	WarpX	Fugaku†	3.1e6	98304	8.1e12		
6/22	WarpX	Perlmutter	4.4e8	1088	1.0e12		
7/22	WarpX	Fugaku	3.1e6	98304	2.2e12		
7/22	WarpX	Fugaku†	3.1e6	152064	9.3e12	4	
7/22	WarpX	Frontier	8.1e8	8576	1.1e13	—	

J.-L. Vay, A. Huebl et al., PoP 28.2, 023105 (2021); L. Fedeli, A. Huebl et al., SC22 (2022)

Kernel Tuning: Particle Sorting increases locality

Top kernels: **current deposition** (scatter) and **field gather + push**: improvement from particle *sorting*.

A Myers et al., **Porting WarpX to GPU-accelerated platforms**. *Parallel Computing.*, 108:102833 (2021). DOI:10.1016/j.parco.2021.102833

Also have **shared memory** deposition algorithms that perform ~40% better on A100 (up to 3x better on MI250X)

Transitioning to an Integrated Ecosystem

WarpX full PIC.

I PA/I PI

HiPACE++ quasi-static, PWFA

ARTEMIS microelectronics

Python: Modules, PICMI interface, Workflows

ImpactX

accelerator lattice design

Object-Level Python Bindings extensible, AI/ML

pyAMReX

PICSAR QED Modules

ABLASTR library: common PIC physics

Desktop to

HPC

AMReX

Containers, Communication, Portability. Utilities

Diagnostics I/O code coupling openPMD Asc ent **VTK ZFP**

FFT

on- or multidevice

Lin. Alg.

BLAS++ LAPACK++

MPI

CUDA, OpenMP, SYCL, HIP

An open interface with the community

Online Documentation: warpx|hipace|impactx.readthedocs.io

Open-Source Development & Benchmarks: github.com/ECP-WarpX

188 physics benchmarks run on every code change of WarpX

Rapid and easy installation on any platform:

python3 -m pip install.

brew tap ecp-warpx/warpx brew install warpx

8 physics benchmarks + 32 tests for ImpactX

cmake -S.-B build cmake --build build --target install

conda install
-c conda-forge warpx

spack install warpx spack install py-warpx

module load warpx module load py-warpx

Thank you for your attention

This research was supported by the Exascale Computing Project (17-SC-20-SC), a joint project of the U.S. Department of Energy's Office of Science and National Nuclear Security Administration, responsible for delivering a capable exascale ecosystem, including software, applications, and hardware technology, to support the nation's exascale computing imperative. This work was supported by the Laboratory Directed Research and Development Program of Lawrence Berkeley National U.S. Energy No. DE-AC02-05CH11231. Laboratory under Department of Contract This research used resources of the Oak Ridge Leadership Computing Facility, which is a DOE Office of Science User Facility supported under Contract DE-AC05-00OR22725, the National Energy Research Scientific Computing Center (NERSC), a U.S. Department of Energy Office of Science User Facility located at Lawrence Berkeley National Laboratory, operated under Contract No. DE-AC02-05CH11231, and the supercomputer Fugaku provided by RIKEN.

GPU Computing at Scale Requires Advanced Load Balancing

Application Challenges

- Plasma Mirrors & Laser-Ion Acceleration: moving front
- Laser Wakefield Accelerator: Injected Beam Particles

- production-quality, easy-to-use
- larger simulation: mitigate local memory spikes

M. Rowan, A. Huebl, K. Gott, R. Lehe, M. Thévenet, J. Deslippe, J.-L. Vay, "In-Situ Assessment of Device-Side Compute Work for Dynamic Load Balancing in a GPU-Accelerated PIC Code," PASC21, DOI:10.1145/3468267.3470614 (2021)

Number of nodes

Science Case: Staging of Laser-Driven Plasma Acceleration

Goal: deliver & scientifically use the nation's first exascale systems

- ExaFLOP: a quintillion (10¹⁸) calculations per second
- ensure all the necessary pieces are concurrently in place

Our DOE science case is in **HEP**, our methods are **ASCR**:

first 3D simulation of a chain of plasma accelerator stages for future colliders

ECP hardware & software co-design paid off:

- WarpX is **500x more performant** than the pre-ECP baseline
- We were the first in ECP to run at scale on Frontier

First-of-their-kind platforms: NERSC (Intel, then Nvidia)→Exascale: OLCF (AMD), ALCF (Intel)

